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1
FAST DWT-BASED INTERMEDIATE VIDEO
CODEC OPTIMIZED FOR MASSIVELY
PARALLEL ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not applicable

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable

REFERENCE TO SEQUENCE LISTING, A
TABLE, OR A COMPUTER PROGRAM LISTING
COMPACT DISC APPENDIX

Not applicable

BACKGROUND OF THE INVENTION

Traditionally, compression (specifically for image/video)
has focused on achieving maximum compression rates by
eliminating redundancy (approaching entropy) at great cost,
by good analysis of the limited set of input domains.
Specifically, this often meant elaborate pattern matching or
clever statistical parameter estimation for a known class of
distributions (in the limit exemplified by the “Hutter prize”
framework). Theoretical limitations have been well under-
stood for some time now, implying formal absence of a
universal solution—mathematically speaking, the general
problem of minimal Kolmogorov complexity is not a com-
putable function. Nonetheless, practical work was focused
on a handful of industry-backed standards of increasing
complexity or specialization, typically based on a sequential
processing model. (e.g. H.264/5).

Rapidly increasing image sensor resolutions (primarily in
strictly spatial resolution, but also in bit depth and video
frame rate) imply an exponential growth of the domain and
variety of input material. Concurrently, rapidly dropping
costs of sensor devices and supporting transmission and
storage technologies made these advances broadly available
in consumer devices. Consequently, current standards can-
not nearly cover all of these emerging needs and application
contexts, particularly in the combination of high throughput
and low cost. Due to a scalability that naturally follows from
its dyadic hierarchical representation, the class of DWT-
based subband approaches (the JPEG2000 standard most
prominent among them) has emerged as a viable candidate
for this challenge, utilized for still images as well as video
in the I-frame only mode (i.e. independently coded frames
with no temporal information considered). Several refer-
ences articulate these issues clearly, e.g. D. S. Taubman and
M. W. Marcellin, “JPEG2000 Image Compression Funda-
mentals, Standards and Practice”, Springer Science+Busi-
ness Media, 2002. Efficient lifting methods of implementing
the DWT have been disclosed in “Efficient wavelet-based
compression of large images” (U.S. Pat. No. 6,546,143 B1)
and elsewhere.

Another natural approach to further scale up with the
galloping high-throughput demand is by leveraging mas-
sively parallel architectures, increasingly affordable as SW-
programmable GPGPUs, while also implementable is HW-
based FPGA and ASIC solutions. This requires identifying
strong (coarse-grained) parallelism, i.e. increasing the pro-
portion P of parallel operations in the model underlying
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Amdahl’s Law. Research has identified the major obstacles
for adapting JPEG2000 further toward such coarse-grained
parallelism, i.e., scaling up with increased resolutions, as
disclosed in: J. Matela et al, “Efficient JPEG2000 EBCOT
Context Modeling for Massively Parallel Architectures”,
Data Compression Conference (DCC’11), pp. 423-432,
Snowbird, USA, 2011; J. Matela, “GPU-Based DWT Accel-
eration for JPEG2000”, Annual Doctoral Workshop on
Mathematical and Engineering Methods in Computer Sci-
ence, pp. 136-143, 2009; J. Franco et al., “A Parallel
Implementation of the 2D Wavelet Transform Using CUDA,
Univ. de Murcia, Spain. In this standard, 24 of its major
components (i.e., the actual compression) are known to be
computationally very intensive, with most processing time
spent in the EBCOT context-based adaptive bit-plane arith-
metic coder (context modeling and arithmetic coding pro-
filed as accounting for 61% in some studies, over 70% in
others). The present invention defines a suitable, highly
parallel replacement for the state-of-the-art EBCOT bit-
plane coding method, enabling a reduction in processing
time while considering key local data that are still most
amenable to good compression rates.

More specifically, this translates focus to a processing
granularity that seeks optimal balance between compact 2D
locality (enabling higher degrees of parallelization and con-
sequent speedup) and size coverage (retaining higher com-
pression rates). It has long been understood in prior art
dealing with concurrent programming that “many non-local
calculations, virtually trivial on single-thread systems, like
counting non-zero pixels in a 2D image, become hard to
solve on the GPU, since its inherently parallel nature can
only be utilized if the output of several parallel units is
combined” (as disclosed in: G. Ziegler et al, “GPU PointList
Generation using HistoPyramids”, Proc. VMV2006, Ger-
many, 2006, pp. 137-144), and that resolving issue that will
require new, explicitly parallel methods.

The present invention is premised on the fact that in
DWT-based processing of UHD input the main redundancy
(and consequent compression potential) comes from typical
artifacts of H-bands on initial levels—large areas of con-
tiguous zeros interspersed with sparse and highly redundant
non-zero values (NZV). The postulated optimal balance
between compact 2D locality and size coverage, is a
achieved by hierarchically combining results from several
parallel units in a manner that retains minimal encoding
(ideally, single bit) for large contiguous 2D zero areas. Prior
art has identified the concept of “reduction operator” (as
disclosed in: G. Ziegler et al, “RealTime QuadTree Analysis
using HistoPyramids”, Proc. of IS&T and SPIE Conf. on
Electronic Imaging, 2007), used by independent threads,
which repeatedly processes four input cells into one, starting
at the resolution level of the original input image, eventually
geared at generating quadtree data structures; specifically,
the cited work described this basic concept in the context of
HistoPyramids and QuadPyramids of a QuadPyramid
Builder. However, the cited prior art was generated in the
context of solving other problems, with a focus on access
methods, traversibility, etc. It did not explicitly focus on
issues of data compression nor can it be obviously extended
in that direction; consequently, it does not recognize or
separate operations of coding and decoding.

One aspect of the present invention allows for moderate
amount of lightweight and strategically focused adaptation
in a way that does not compromise strong parallelism or add
bulky side information.

As indicated above, most redundancy and savings come
from relatively localized (spatio-temporally) contexts,
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which allows to avoid combinatorial explosions in context
modeling and estimation, maintain causality, and avoid
possibly massive side information to be transmitted. This in
turn enables specific benefits: a) real-time (including low-
latency) processing; b) random access (temporal) and non-
linear editing (NLE) capability for video-material; ¢) ran-
dom access (spatial), allowing region-of-interest (ROI)
focus and flexibility.

For the given requirements, classical VL.C coding (e.g.
Elias beta/gamma, Golomb-Rice) appears preferable over
Huffman-style recalculated/adaptive entropy (arithmetic,
range) coding in terms of both lower computational com-
plexity and lack of inherent sequential bias for the given
problem. A limited number of predetermined distributions
usually adequately model high-band coefficient magnitude
values. Generally, principles of VLC are well-known to one
skilled in the art, having been described in standard refer-
ences, e.g., D. Salomon and P. Motta, “Handbook of Data
Compression”, Springer, 2010.

Parameter estimation for the underlying distributions
should combine locality for focus and globally observed
correlation among frames/planes/bands of a single source.
Further lossless compression gains achieved by identifying
band-specific local patterns of small non-zero coefficients
and signs, and using appropriate entropy coding on such
local vectors. Appropriately designed code stream and over-
all file format allow for optimal just-in-time decoding while
providing the desired scalability.

Basic notions of concurrent (parallel) programming—
including threads, synchronization and common memo-
ries—should be well known to one skilled in the art, and
have been described in standard references, e.g., M. Raynal,
“Concurrent Programming: Algorithms, Principles and
Foundations™, Springer, 2013.

Finally, it should be pointed out that one of the multiple
practical classifications of codecs defines the following three
basic classes:

1. Acquisition
2. Intermediate
3. Distribution

The key distinguishing criterion here is the work balance
between the two codec ends; in addition to the more tradi-
tional type 3 applications (compress once, decode many—
e.g. distribution and broadcast of film material), there are
many now that fall into types 2 (symmetric—e.g. digital film
editing workflow) or 1 (inexpensive and ubiquitous coding,
infrequent and more elaborate decoding—e.g. sparse repre-
sentation, distributed multiple description coding, compres-
sive sensing). Most practical flexibility comes from inter-
mediate codecs, and the balance of compression and
decompression efforts would put the present invention in
that class.

BRIEF SUMMARY OF THE INVENTION

The present invention gives a method and apparatus that
incorporate new features into generally known DWT-based
compression frameworks in a manner that enables utilizing
parallel architectures (concurrent programming) in segments
hitherto mostly limited to sequential processing models—
specifically, entropy coding. The method and apparatus are
particularly designed for compression and decompression of
large 2D input data, such as images and video frames. In the
context of a DW'T-based hierarchical subband decomposi-
tion of the input, 2D arrays of highly redundant H-band
coeflicients are compressed by means of a scalable iterative
mechanism combining cooperating massively parallel units
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(threads) with sequential modules that manage and combine
thread results, generating a compressed linear bitstream. A
symmetric process performs the reverse function of decom-
pressing this bitstream back into original 2D data.

The advantages of dyadic subband DWT-based compres-
sion frameworks known from prior art are thereby extended
in a manner that enables high throughput processing, i.e.,
low-latency real-time coding and decoding of large input. At
the same time, the system allows for retaining meaningful
degrees of compression by focusing on redundancies that are
either local or scale up in a compact representation.

In one aspect of the present invention, variable-length
codes for both non-zero coefficient values and their positions
within sparse arrays are combined in a compact linear
representation by means of scalable and massively parallel
thread units, based on quadtree principles known from prior
art.

Other advantages and aspects of the present invention will
become apparent from the following detailed description,
considered in conjunction with accompanying drawings,
including an example that illustrates the principles of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart illustrating the basic workflow of a
DWT-based hierarchical subband decomposition as known
from prior art.

FIG. 2 is a block diagram of the structure of an embodi-
ment of the encoding aspect of the present invention.

FIG. 3 is an illustration of the structure of one embodi-
ment of encoding common memory.

FIG. 4 is a flowchart of the basic operation of the
encoding aspect of the present invention.

FIG. 5 is a block diagram of an embodiment of the
decoding aspect of the present invention.

FIG. 6 is an illustration of the structure of one embodi-
ment of decoding common memory (based on actual values
from traced example).

FIG. 7 is a flowchart of the basic operation of decoding
aspect of the present invention.

FIG. 8 is a visual representation of the example 8x8 input
array of coefficients, containing zero and non-zero values.
All values are 0, except at the following (x,y) index pairs
(0-based indexing, from top left): (0,0), (0,1), (0,2), (1,4),
2,7), (4,0), (4,3), (5,0), (5,1), (5,3), (7,0).

FIG. 9 shows contents of LIFO 210 at the end of each of
3 example encoding iterations, with 0-based iteration index
j- As noted in sec. 2, the virtual record delimiter “|” is used
for illustration purposes only and is not part of the actual
LIFO. For simplicity, pattern values are given in their
uncoded decimal form.

FIG. 10 shows contents of control array 602 (active
elements shown in underlined bold) and pattern array 604 in
each of 3 example decoding iterations, with O-based itera-
tion index j.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention is embodied in methods and appa-
ratuses for compression and decompression of large 2D
input data, such as images and video frames. In the context
of'a DW'T-based hierarchical subband decomposition of the
input, 2D arrays of highly redundant H-band coefficients are
compressed by means of a scalable iterative mechanism
combining cooperating massively parallel units (threads)
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with sequential modules that manage and combine thread
results, generating a compressed linear bitstream. A sym-
metric process performs the reverse function of decompress-
ing this bitstream back into original 2D data.

FIG. 1 illustrates the basic workflow of a DWT-based
hierarchical subband decomposition as known from prior
art. Input (100) comes in the form of a series of 2D images
that constitute video. In this embodiment each frame is
successively considered and encoded separately (I-frame
only mode), processed by block 102 (henceforth we will not
distinguish cases of image and video, given their straight-
forward correspondence). Next, each frame is optionally
separated into constituent image planes in block 104; there
is a plurality of customarily used plane formats (most
notably including RGB, YUV and YCbCr); the exact type
and actual number of planes (which could be simply 1) are
not relevant for this invention. Likewise, we do not distin-
guish here between a plurality of more specific representa-
tions (e.g., for YUV/YCbCr those customarily designated as
4:4:4, 4:2:2, 4:2:0, 4:1:1), as their processing specifics are
well know in the art. (Furthermore, in one embodiment the
actual input values are considered to be integers; however,
this does limit the essence of the invention.) Each plane is
now processed separately.

Block 106 performs the actual DWT hierarchical subband
decomposition for a single frame, starting with the actual
frame and recursively producing on each level 4 bands of
coefficients (LL, HL,, LH, HH), each band of V4 size of that
level’s input. Any standard filter (e.g. Haar 2/2, LeGall 5/3,
CDF 9/7) can be used; it is understood that certain integer
filters (e.g. LeGall 5/3) allow for a perfectly reversible
transformation, given their absence of non-deterministic
rounding considerations. The decomposition is performed
for a predetermined number n of levels; for convenience,
input is indexed “level 07, and subsequent levels by con-
secutive integers, ranging from 1 to n. On each level, the LL
band is treated as new input, subject to further dyadic
recursive decomposition within block 106, and the 3 remain-
ing H-bands are ready for coding/further processing.
H-bands are then first subject to optional quantization in
block 108. In one embodiment, the quantization performed
is of the standard, scalar type; other types are known in the
art, and the whole step is optional. It is understood that
skipping quantization enables lossless compression (per-
fectly achieved only when coupled with a reversible integer
DWT filter), otherwise compression is perforce of a lossy
kind.

Finally, each 2D array of H-band coefficients is passed to
block 110 for encoding; here is where the fundamental
improvements of the present invention reside. Block 110
generates on its output a compressed bitstream (112).

The overall process of decoding/decompression proceeds
as a conceptually analogous reversal of compression blocks,
starting from the compressed bitstream 112, and eventually
producing input data 100 (in case of lossy compression, the
restored data will be only an approximation of the original
data 100). Both coding and decoding are viewed as integral
parts of the same overall method. This is particularly justi-
fied for intermediate (symmetric) codecs like the one pres-
ently disclosed.

FIG. 2 shows the structure of an embodiment of the
encoding portion of the present invention. The major com-
ponents are a plurality of encoding threads (ET) (202), an
encoding control module (ECM) (204), a synchronization
module (206) for synchronizing threads, encoding working
common memory (208) accessible to both ECM 204 and all
ETs 202, and used for their mutual communication (further
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structure of this common memory is shown in FIG. 3 and

described below). The input given to the system, represent-

ing coeflicients from a given level/band combination, comes
in the form a 2D coeflicient array (200), accessible to all ETs

202. The system generates as its output a linear bitstream

(210), which has the characteristics of a last-in-first-out list

(LIFO), and will be denoted as LIFO here. Only ECM 204

writes to LIFO 210. Output to LIFO 210 comprises the

eventual compressed stream for the given input.

FIG. 3 shows the structure of one embodiment of encod-
ing common memory 208. It is based on an array of fixed
length 1, where each element comprises three parts: (i)
binary control memory (302); (ii) pointer to variable-length
binary value string (possibly null); (iii) pointer to variable-
length binary pattern string (possibly null). As as result, this
structure can be conceptually viewed as three separate data
structures in a manner that should be clear to one skilled in
the art. One is of fixed length, termed here control memory
302, the other two are of variable length, termed here value
accumulator (304) and pattern accumulator (306), respec-
tively. Value accumulator 304 comprises the plurality of
individual value strings; pattern accumulator (306) com-
prises the plurality of individual pattern strings.

FIG. 4 gives a flowchart of the basic operation of com-
pression aspect of the present invention. For convenience of
reference, it will be described in a series of sections below
(1-8).

1. Input 200 is given to the system; output LIFO 210 begins
empty. A total of | instances of ETs 202 are initiated, with
1=4™", m=log, a, and a=total coeflicient input size; m will
also be the maximum number of iterations. Prior to
entering the main iterative loop 401, a synchronization
step 402 is performed on all ETs 202 by synchronization
module 206. Loop 401 comprises the following main
steps in sequence: concurrent block 404, during which a
plurality of ETs 202 execute operations as described in
sec. 2-4 below; synchronization step 406 performed on all
ETs 202 by synchronization module 206; sequential block
408, during which ECM 204 executes operations as
described in sec. 2-4 below; and finally, loop control
block 410.

2. The method proceeds as a sequence of iterations inside
loop module 401, controlled and managed within block
410. When entered, block 410 first tests for end of loop,
which is a disjunction of two conditions: no ET wrote out
a “0” to the control memory (i.e., no ET performed
aggregation), or just a single ET is left. If end of loop
condition is not satisfied, the number of active ETs is
reduced to Y4 for the subsequent iteration, as detailed in
sec. 4. The maximum number of iterations m (constant for
a given level, across all bands and frames) is stored and
transmitted as a parameter of compression, in the com-
pressed bitstream in a manner well known in the art. If
total number of iterations was below maximum m for a
given band, the shortfall s is transmitted along with
compressed data. It is understood that all VL.C coding is
performed by prefix-coding or other self-delimiting
(uniquely decodable) methods. Single writes by ECM 204
to LIFO 210 (as described in sections 3 and 4) are termed
“records” for convenience of reference; it is understood
that there are no explicit delimiters between them, and
elements of each record are self-delimited as described in
the previous sentence; therefore, LIFO 210 consists of an
encoded bitstream of self-delimited binary codes, which
encode either patterns or values.

3. In the first iteration, within concurrent block 404, each ET
performs these steps: a) Analyze its corresponding
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4-square (2x2) of input coefficients, based on a specific
(recursive raster) 2D to 1D mapping of threads into a
linear array of indices. b) Perform reduction operator, i.e.
output to its assigned spot in control memory 302: If all
4 values are 0 then O else 1 (outputting 0 is termed
“aggregation”); ¢) Classify analyzed pattern in terms of
NZV (non-zero values), into one of 16 binary options (in
raster scan of the 4 positions—from “0000” to “1111”,
mapped sequentially to symbols #0-#15, with #0 repre-
senting “0000); d) Use probability distribution of the
NZV symbols #1-#15 (described in sec. 6) to generate
VLC and write it to ET’s assigned place in pattern
accumulator 306; ) Use probability distributions to deter-
mine VLC for actual value (sign+magnitude) of any NZV
entries (1-4 of them) and write them in sequence to ET’s
assigned place value accumulator 304 (as described in
sec. 5). Next, perform synchronization step 406 on all ETs
202 by synchronization module 206. Block 406 (as well
as other invocations of 206) are necessary since all ETs
are conceptually concurrent and synchronous, but not
necessarily actually executing in parallel; alternative
embodiments could have different levels of parallelism.
Next, within block 408, ECM 204 performs the following:
a) Sequentially scan value accumulator 304, concatenate
together all non-zero (non-null) VLC entries into a value
string that is added as first record to LIFO 210; release
value accumulator 304 (null its memory); b) Sequentially
scan pattern accumulator 306 (with appropriate stride,
initially 1), concatenate together all non-zero (non-null)
VLC entries into a pattern string that is added as next
record at the front of LIFO 210; release pattern accumu-
lator 306 (null its memory).

. Prior to each subsequent iteration, loop control block 410

will keep active ¥4 ETs from previous iteration: all those
with index number i divisible by 1=4, (i.e., i mod 4=0),
j being the 0-based iteration number. Each active ET 202
performs the same steps as in the initial iteration within
block 404, with two exceptions: 1) in step (a) the values
analyzed are the 4 control memory values starting from
the ET’s current index, with a stride of #°'; 2) step (e) is
omitted. Next, synchronization step 406 is performed on
all ETs 202 by synchronization module 206, as in first
iteration. ECM 204 performs only part (b) from the initial
iteration, in identical manner, within block 408.

. In one embodiment of the present invention, the VL.C for

values written to value accumulator 304 is a signed Elias
gamma code. Values are assumed to be non-zero signed
integers, represented in “sign and magnitude” form; the
former is coded by a single bit and the latter split into
binary exponent (MSB position, 0-based) and mantissa
(remainder). The Elias gamma code is self-delimiting,
created by prepending a unary code of the MSB position
(effectively, the length) to the binary representation of the
magnitude. Therefore, example binary codewords would
be: for magnitude 1—“1”; for magnitude 3—“0117; for
magnitude 6—00110”, etc. In another embodiment,
signs are assumed to have a generally uniform distribution
and are coded with a full single bit in the four single-NZV
patterns (#1, 2, 4, 8). Sign differentials in multi-NZV
patterns generally have skewed distributions and are
coded accordingly. (E.g., of the 4 sign patterns possible in
each of the 4 cases with exactly two axis-aligned “1”
values (#3, 5, 10, 12-“0011”, ©“01017, *“1010”, “1100”) in
the LH band, equal signs are considerably more likely (in
general) in the vertical line cases (#5, 10), and consider-
ably less likely in the horizontal line cases (#3, 12).
Magnitudes in non-all-NZV patterns (all except #15)
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generally are heavily skewed towards low values and are
VLC (entropy) coded according to known distributions
(e.g., “1” being by far the most common value in single-
NZV cases). For case #15 one embodiment would use
JPEG-LS or similar approach well known from the art (as
in that case values are generally correlated, but not
necessarily expected to be close to 0).

6. The VLC of the 15 symbols written to LIFO 210 (symbols
#1-15) is based on known measured non-uniform prob-
ability distributions (single-NZV symbols being consid-
erably more frequent than the rest, followed by 2-NZV
symbols, etc.). In one embodiment, the VL.C prefix code
for encoding 15 symbol classes includes the codewords:
000; 001, 010, 011; 100; 101, 1100; 1101; 111000
111001; 111010 111011, 1111005 111110; 111111. Here,
single-NZV symbols would map into the first 4 code-
words. Such a code is denoted here VLC-1. In another
embodiment, the VLC prefix code for encoding 15 sym-
bol classes includes the codewords: 00; 01; 10; 110;
111000; 111001; 111010; 111011; 111100; 111101,
111110; 11111100; 11111101; 11111110; 11111111. Here
again, single-NZV symbols would map into the first 4
codewords. Such a code is denoted here VLC-2. Assum-
ing distributions with single-NZV symbols considerably
more probable than the rest, the average code length will
normally be shorter than the uniform 4-bit fixed length
code needed for the 15 symbols, and therefore provide
compression. Generally, as used herein (and elaborated in
sections 5 and 6), the terms “variable length coding”
(VLC) or “entropy-coding” for a single symbol or value
refers to one of the methods described in standard refer-
ences (e.g., D. Salomon and P. Motta, “Handbook of Data
Compression”, Springer, 2010). Likewise, in certain
aspects of the present invention (e.g., for some of the
NZV patterns appearing on higher levels), if the statistics
would justify doing so, 4-bit fixed-length codes could be
used instead, without limitation of generality of the
approach, and retaining a useful degree of compression;
such fixed-length codes can always be considered a
degenerate case of VLL.C. Therefore, the particular coding
choice is not important for the method presented herein to
work, provided the coding is used in a proper manner.
Thus, the expression “VLC” is used herein to identify
coding pursuant to one of these methods. Concurrently, a
significant objective of the invention is to allow use of fast
methods of low complexity for the symbol coding.

7. In one embodiment, the statistics (i.e., probability distri-
butions) needed for the two types of entropy-based coding
(VLC) used above are compiled and updated once a
frame, for each given plane/level/band combination, then
encoded and transmitted as side information between
frames, to be used with the next frame Since it is
information that is part of the compressed stream, it is
available to the decoder, without dependency on any
previous frames decoded (i.e., enabling random access
single frame decoding). The initial statistics for the first
frame can be precompiled based on a large corpus of data.
In an alternative embodiment, such precompiled statistics
could be used the fixed values instead of the adaptive
approach outlined earlier in this section, trading off space
savings in side information and statistic computation time
against more modest compression ratios.

8. At the final DWT level (level n) optionally encode the
remaining LI, band through any standard VL.C method.
One embodiment would view the individual values in as
a combination of sign (optional), exponent (binary;
equivalently—MSB position) and mantissa (equiva-
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lently—[.SB sequence), and employ some variant of

JPEG-LS (or other combination of DPCM and/or predic-

tive and Golomb-Rice coding) for coding the correlated

sequence of exponents (e.g., as disclosed in C. Chrysafis
and A. Ortega, “Line Based, Reduced Memory, Wavelet

Image Compression”, Proc. IEEE Data Compression

Conference (Snowbird, Utah), 1998); in an alternative

embodiment, a DCT transform would be applied, fol-

lowed by known methods for coeflicient compression.

FIG. 5 shows the structure of an embodiment of the
decoding portion of the present invention. The major com-
ponents are a plurality of decoding threads (DT) (502), a
decoding control module (DCM) (504), a synchronization
module (506) for synchronizing DTs, decoding working
common memory (508) accessible to both DCM 504 and all
instances of DT 502, and used for their mutual communi-
cation (further structure of this common memory is shown
in FIG. 6 and described below). The LIFO 210 is presented
as input to this subsystem, to be processed in last-in-first-out
list (LIFO) manner. Only DCM 504 reads from LIFO 210.
The system generates as its output a 2D coefficient array
(514), accessible for writing to all DTs 502. Dimensions of
514 are kxk, where k=SQRT (1). In embodiments imple-
menting lossless compression, 514 will be identical to the
original 2D coefficient array 200; in embodiments imple-
menting lossy compression, 514 will be a close approxima-
tion of 200.

FIG. 6 shows the structure of one embodiment of decod-
ing common memory 508. It is based on an array of fixed
length 1, where each element comprises three parts: (i)
integer control field; (ii) integer pattern field; (iii) pointer to
variable-length supplied symbol list (possibly null). As a
result, this structure can be conceptually viewed as three
separate data structures in a manner that should be clear to
one skilled in the art. Two are of fixed length, termed here
control array (602), and pattern array (604), respectively; the
third is of variable length, termed here supplied symbol list
(606).

FIG. 7 gives a flowchart of the basic operation of decom-
pression aspect of the present invention. For convenience of
reference, it will be described in a series of sections below
(9-11); for clarity, the section numbering is kept sequential
and distinct from compression section enumeration.

9. The LIFO 210 is given as input to the system; it is
understood that it might contain at its beginning informa-
tion about supplied statistics, as detailed in sec. 7, as well
as other ancillary information whose presence and han-
dling do not influence the basic claims of this invention.
Output array 514 begins with all values initialized to 0. A
total of 1 instances of DT 502 are initiated, with 1=4™"!,
each with an index mapping into a 2D image structure
exactly as in the ET case. Prior to entering the main
iterative loop 701, an initialization step 703 is performed.
Loop 701 comprises the following main steps in
sequence: sequential block 704, during which DCM 504
executes operations as described in sec. 10-11 below;
synchronization step 706 performed on all DTs 502 by
synchronization module 506; concurrent block 708, dur-
ing which DTs 502 execute operations as described in sec.
10-11 below; synchronization step 710 performed on all
DTs 502 by synchronization module 506; and finally, loop
control block 712. The ultimate task of each DT 502 is to
first determine the value of its final symbol in pattern
array 604, then expand that code into the full sequence of
4 values (forming the corresponding 4-square in output
514). This is achieved by means of an iterative process of
at most m steps described in sec. 10-11 below. By
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convention, iteration numbering is zero-based and in each
iteration j the number of active DTs is 4; therefore the first
iteration (j=0) has a single active DT. Each DT is activated
in iteration j=m-k'-1 where k' corresponds to the highest
value k<m that makes its linear index divisible by 4* (e.g.,
in case m=3, for DT 0: j=0; for DT 12: j=1; for DT 14:
j=2). Both control array 602, and pattern array 604 of
length 1 are initialized with all values at 0; supplied
symbol list 606 is initialized to null elements. The ini-
tialization step 703 is performed by DCM 504 thus: If
there is no maximum iteration shortfall (i.e., s=0), pop the
top symbol codeword off LIFO 210, decode it, assign it as
first value (at index 0) of pattern array 604, determine its
NZV size (i.e., number of NZV elements, ranging 1-4),
assign that as first value (at index 0) of control array 602.
If the maximum iteration shortfall s>0, set initial iteration
index to j=s, correspondingly pop 4' top symbol code-
words off LIFO 210, and perform decode and assign
operations for appropriate indices of arrays 604 and 602
as for case j=0.

10. The method proceeds as a sequence of iterations inside
loop module 701, controlled and managed within block
712. When entered, block 712 first tests for end of loop
condition, reached when iteration index j=m-1. As
described later in sec. 11, the last iteration (j=m-1) has
certain special-case handling which is flagged within
block 712. If end of loop condition is not satisfied,
increase j by 1, then activate three times more DTs, those
with linear indices divisible by 47!, Following that,
DCM 504 sequentially performs the following steps (a)-
(c) in block 704: a) Sequentially examine active elements
of control array 602 (indices with stride 4”7), each
containing integer values 0-3 representing NZV count; b)
For each examined element, pop off that many codewords
from LIFO 210, then decode them as a sequence of
pattern symbols; ¢) For each examined element, perform
assignment of that sequence of symbols to supplied
symbol list 606, at index corresponding to examined
element (this sequence will be empty in cases correspond-
ing to “0” values observed in control array 602). Next,
perform synchronization step 706 on all DTs 502 by
synchronization module 506. Analogously to the ET case,
block 706 (as well as other invocations of 506) are
necessary since all DTs are conceptually concurrent and
synchronous, but not necessarily actually executing in
parallel; alternative embodiments could have different
levels of parallelism. Each active DT 502 performs the
following steps (a)-(d) within block 708, in all iterations
except the final iteration (whose specifics are described in
sec. 11): a) Observe current value of its symbol in pattern
array 604 and transform the symbol into its 4-bit binary
form; b) Replace the “1” bits in this binary string sequen-
tially with symbols from DT’s corresponding element in
supplied symbol list 606, thus creating a length-4 string of
symbols (some or all of which might be 0) and release that
memory element from list 606; c) Write each of these
symbols into the 4 positions in pattern array 604 indexed
at 4”72 apart (as defined in sec. 9), starting from DT’s
current position in array 604 (in practice, only NZVs need
be written); d) Finally, determine length-4 string of
lengths (corresponding to the 4 written symbols) and
write these values in control array 602, at identical index
positions as the symbols just written to pattern array 604.
Next, perform synchronization step 710 on all DTs 502 by
synchronization module 506. Finally, perform loop con-
trol actions within block 712.
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11. The final iteration of loop 701 (as indicated in sec. 9,
corresponding to j=m-1) has the following differences
from prior iterations. Within block 704, DCM 504 per-
forms steps: a) Identical to regular iterations; b) Same as
regular iterations, except now decode codewords popped
from LIFO 210 as values (based possibly on known
statistics supplied as side information); ¢) Same as regular
iterations, except elements written from list 606 to cor-
responding positions in pattern array 604 now represent
values. Within block 708, each DT 502 in performs these
steps: a) Same as regular iterations; b) Same as regular
iterations, except now created is a length-4 string of
values; c) Restore original 4-square of values (associated
with DT 502) in output array 514, from length-4 string of
values, based on standard raster order; d) Omit. This ends
operation within block 708 for the final iteration (i.e., step
(d) of regular iterations is omitted).

The operation of both the compression and decompres-
sion aspects of the present invention can be illustrated by
means of a simple example, resulting from a hypothetical
original 16x16 image, with a=64, m=3 and 1=16, and where
a first-level DWT transform generates 4 subbands of quarter
size, 8x8. For the purpose of tracing changes to the pattern
portion of LIFO 210 and to control memory 208, actual
non-0 values are not important, as they only matter for value
portion of LIFO 210). FIG. 8 illustrates such an 8x8 input
array, with white squares representing ‘0’ values, and shaded
squares representing arbitrary NZVs. FIG. 9 shows the state
of the encoding control memory 208 during each of the 3
iterations. FIG. 10 shows the state of the decoding control
memory 508 during each of the 3 iterations.

CONCLUSION

A method and apparatus for compression and decompres-
sion is described. While the invention has been presented in
detail herein in accordance with certain preferred embodi-
ments thereof, various modifications and changes therein
should be apparent to those skilled in the art. In certain
cases, the present invention may be practiced without these
specific details. In other instances, well-known devices and
structures are shown in block diagram form, rather than in
detail. Some examples of such specifics are given below.

In one embodiment of this invention the pattern codes on
levels following the first one are output to the pattern LIFO
as VLC. It is understood that fixed length codes are special
(degenerate) form of VLC, in a way that is clear to one
skilled in the art. In certain cases (of high entropy for pattern
distribution on higher levels) it could be more advantageous
to keep this method and we consider that all combinations of
fixed and VLC codes are covered by this disclosure.

The current invention disclosure assumes that compres-
sion begins with a being a power of 4 (i.e., the 2D coefficient
array has equal dimensions of power-of-2 length). When this
is not the case, the input 2D coefficient array should be
padded by virtual “0” elements, up to the nearest power-of-2
square; i.e., inclusively up to index value (in 0-based index-
ing) ceil (log, d)-1 along a given dimension, where n is the
size of a that dimension (which should be recorded) prior to
compression. Analogously, these padded values will be
discarded upon decompression, reducing the coeflicient
array (and ultimately image) to its known original size.

The presented detailed description is based on a specific
(recursive raster) 2D to 1D mapping of threads into a linear
array of indices; however, any space-filling curve could be
used instead. Such methods are well known in the art, having
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been described in standard references, e.g. M. Bader, “Space
Filling Curves”, Springer, 2013.

In summary, it is intended by the appended claims to
cover all such modifications and changes as fall within the
true spirit and scope of the invention.

What is claimed is:

1. A method for encoding and decoding a two-dimen-
sional array of numerical values, the array including N lines
of length K, where N and K are positive integers, on a
parallel computer processor, comprising the steps of:

providing L concurrent synchronized encoding threads
that execute at most M fixed-sized operations each,
where M=ceil (log,(max(N,K))) and L=(max(N,K))*/
4

partitioning said array into square 2x2 pixel areas,
whereby each one is mapped to a specific one of said
encoding threads;

transforming non-zero values observed by each of said
threads in their respective areas of said array, employ-
ing self-delimiting variable-length coding, thereby pro-
ducing value codewords;

assembling all said value codewords into a linear bit-
stream;

transforming positional information of said non-zero val-
ues in said array by said encoding threads, employing
self-delimiting variable-length coding, thereby produc-
ing position codewords;

adding all said position codewords into said linear bit-
stream;

providing L concurrent synchronized decoding threads
that execute at most M fixed-sized operations each;

interpreting said linear bitstream, whereby said variable-
length code position codewords are decoded into said
non-zero value positional information, wherein said
non-zero value positional information is assigned to
their corresponding instances of said decoding threads;
and

interpreting said linear bitstream, whereby said variable-
length code value codewords are decoded and com-
bined with said non-zero values positional information
by said decoding threads to restore said two-dimen-
sional array;

whereby said linear bitstream represents a compressed ver-
sion of said two-dimensional array, wherein complexity of
said method increases only logarithmically with linear size
of said two-dimensional array.

2. The method recited in claim 1, wherein said method
appears as an integral part of a broader method of image
compression and decompression based on the discrete wave-
let transform (DWT), such broader method comprising a
plurality of these steps:

(1) performing a subband decomposition of said image by
recursive application of two-dimensional DWT on an
ordered plurality of levels, whereby each said level is
represented by four coefficient bands (LL, HL, LH,
HH) of quarter size, wherein each said LL band is
passed as input to next of said levels;

(i1) encoding said coefficient bands on all said levels,
thereby producing a compressed bitstream;

(ii1) decoding said compressed bitstream, thereby restor-
ing raw values for said coefficient bands; and

(iv) performing a recursive application of two-dimen-
sional inverse DWT on an ordered plurality of levels
with said coefficient bands, thereby restoring said
image;

whereby said method is employed to encode all said coef-
ficient bands, with or without quantization, into said com-
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pressed bitstream, and said method is furthermore employed
to decode said compressed bitstream, with or without
dequantization, thereby restoring raw values for said coef-
ficient bands on all said levels.

3. The method recited in claim 2, wherein said self-
delimiting variable-length coding of said non-zero values is
performed by Elias gamma code.

4. The method recited in claim 2, wherein said self-
delimiting variable-length coding of said positional infor-
mation is performed by either VL.C-1 code or VL.C-2 code.

5. The method recited in claim 2, wherein said self-
delimiting variable-length coding of said non-zero values is
performed by Elias gamma code, and wherein said self-
delimiting variable-length coding of said positional infor-
mation is performed by either VL.C-1 code or VL.C-2 code.

6. The method recited in claim 1, wherein said self-
delimiting variable-length coding of said non-zero values is
performed by Elias gamma code.

7. The method recited in claim 1, wherein said self-
delimiting variable-length coding of said positional infor-
mation is performed by either VL.C-1 code or VL.C-2 code.

8. The method recited in claim 1, wherein said self-
delimiting variable-length coding of said non-zero values is
performed by Elias gamma code, and wherein said self-
delimiting variable-length coding of said positional infor-
mation is performed by either VL.C-1 code or VL.C-2 code.

9. An apparatus for encoding a source two-dimensional
array of numerical values, the array including N lines of
length K, where N and K are positive integers, the apparatus
comprising:

(1) L concurrent synchronized encoding threads that
execute at most M fixed-sized operations each, where
M=ceil (log,(max(N,K))) and L=(max(N,K))*/4,
whereby each of said threads performs transformation
of said source array into linear bitstream codewords;

(ii) synchronizing module for synchronizing operation of
said threads;

(iii) encoding control module for managing results of said
threads;

(iv) control memory accessible for read and write to all
said threads and said control module;

(v) list data structure for said control module to output
compressed representation of said array, wherein said
compressed representation comprises a plurality of said
bitstream codewords; and

(vi) looping mechanism for engaging the operation of a
plurality of said elements (i)-(v) in an iterative loop
with defined end conditions;

wherein said threads transform non-zero values observed by
each of said threads in their respective areas of said array,
through self-delimiting variable-length coding into value
codewords, wherein said threads and said control module
transform positional information of said non-zero values in
said array through self-delimiting variable-length coding
into position codewords, and wherein said control module
assembles all said value codewords and all said position
codewords into said linear bitstream.

10. The apparatus recited in claim 9, wherein said appa-
ratus appears as an integral part of a broader system for
compression of input image based on the discrete wavelet
transform (DWT), such broader system comprising these
steps:

(1) performing a subband decomposition of said image by
recursive application of two-dimensional DWT on an
ordered plurality of levels, whereby each said level is
represented by four coefficient bands (LL, HL, LH,
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HH) of quarter size, wherein each said LL band is
passed as input to next of said levels;

(i1) encoding said coefficient bands on all said levels,
thereby producing a compressed bitstream;

and wherein said apparatus processes a plurality of said
coeflicient bands, thereby performing the (ii) encoding
step.

11. The apparatus recited in claim 10, wherein said
self-delimiting variable-length coding of said non-zero val-
ues is performed by Elias gamma code.

12. The apparatus recited in claim 10, wherein said
self-delimiting variable-length coding of said positional
information is performed by either VLC-1 code or VL.C-2
code.

13. The apparatus recited in claim 10, wherein said
self-delimiting variable-length coding of said non-zero val-
ues is performed by Elias gamma code, and wherein said
self-delimiting variable-length coding of said positional
information is performed by either VLC-1 code or VL.C-2
code.

14. An apparatus for decoding a linear bitstream of a
certain format, whereby said bitstream is transformed into a
two-dimensional array, the array including N lines of length
K, where N and K are positive integers, the apparatus
comprising:

(1) L concurrent synchronized decoding threads that
execute at most M fixed-sized operations each, where
M=ceil (log,(max(N,K))) and L=(max(N,K))*/4,
whereby each of said threads performs transformation
of portions of said bitstream into elements of said array;

(i1) synchronizing module for synchronizing operation of
said threads;

(ii1) decoding control module for managing results of said
threads;

(iv) control memory accessible for read and write to all
said threads and said control module; and

(v) looping mechanism for engaging the operation of a
plurality of said elements (i)-(iv) in an iterative loop
with defined end conditions;

wherein said threads and said control module interpret said
linear bitstream as a series of self-delimiting variable-length
code non-zero value position codewords and self-delimiting
variable-length code value codewords, wherein said non-
zero value position codewords are decoded into said non-
zero value positions and assigned to their corresponding
instances of said decoding threads; and whereby said vari-
able-length code value codewords are decoded and com-
bined with said non-zero values positions by said decoding
threads to output said two-dimensional array.

15. The apparatus recited in claim 14, wherein said
apparatus appears as an integral part of a broader system for
image decompression based on the inverse discrete wavelet
transform (DWT), such broader system comprising these
steps:

(1) taking as input a compressed bitstream of certain
format, as might be produced by an image compression
system based on multi-level subband DWT decompo-
sition;

(i1) decoding said input as a plurality of encoded coeffi-
cient bands, thereby restoring raw values for said
coeflicient bands on an ordered plurality of levels;

(iii) recursively applying a two-dimensional inverse DWT
on the ordered plurality of levels with said coefficient
bands, thereby restoring said image;

and wherein said apparatus processes a plurality of said
coeflicient bands, thereby performing the (ii) decoding step.
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16. The apparatus recited in claim 15, wherein said
self-delimiting variable-length codes of said non-zero values
are interpreted as Elias gamma code.

17. The apparatus recited in claim 15, wherein said
self-delimiting variable-length coding of said positional 5
information are interpreted as either VL.C-1 code or VL.C-2
code.

18. The apparatus recited in claim 15, wherein said
self-delimiting variable-length codes of said non-zero values
are interpreted as Elias gamma code, and wherein said 10
self-delimiting variable-length codes of said positional
information are interpreted as either VL.C-1 code or VL.C-2
code.
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